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DOPPLER FREQUENCY [N INTERPLANETARY RADAR
AND GENERAL RELATIVITY

by

G. C. McVittie
University of Illinois Observatory

INTRODUCTION

The object of this investigation is to present the theory of the change of frequency of signals in
interplanetary radar experiments when general relativity is employed as the theory of gravitation. The
basic ideas will be found in the author’s General Relativity and Cosmology (Reference 1). No claim is
made that the contents of the first three sections of this paper are entirely hew and that similar results
have not been obtained by others by alternative methods. The last two sections contain the author’s
ideas on the interpretation of the theoretical formulas. The associated problem of radar time delays is
worked out in Reference 2.

It is well known that in Einstein’s theory of gravitation an exact solution of the gravitational field
of a set of discrete bodies is possible only when one of the bodies is of finite mass whereas the rest are
of infinitesimally small mass. This is in contrast to Newton’s theory of gravitation in which an exact
solution for the problem of two massive bodies in motion is possible, complications arising only when
three or more bodies are in question. In Einstein’s theory the field of the single massive body is given
by the Schwarzschild space-time. The massive body may be taken to be the Sun and the planets, their
satellites, space probes, etc., must then be regarded as test particles whose own grav1tat10nal fields are
to be regarded as negligibly small

The simplest form of the metric of the Schwarzschild space-time is

2 2 02
ds2=<l— 2m>d2 dr /(1-2m2/r)+r dQQ

(1

r c

d2? = do? +sin? 6 d¢?

in which r = 0 is the center of the (spherically symmetric) massive body. The interval s and the time ¢
are measured in time units, 7 is in length units, ¢ is the local velocity of light, and the constant m is

defined by

m:E.M_, )

c2



where G is the constant of gravitation and M is the mass of the central body. When M is the mass of
the Sun,
m=1477X10°  cm. 3)

If the central body is the Earth, then
m = 0.443 cm. (4)

It is well known that in relativity there is no unique system of coordinates in a given space-time,
The Schwarzschild space-time for a given central body is characterized by one and the same value of
m, whatever coordinate system may be employed. Two of the simplest alternative systems to the one
used in Equation 1 are the isotropic and the harmonic systems (Reference 3). In the isotropic system
the coordinate r is replaced by 7 where

Fll+ 2 2 (5)
r=F -1,
2r
in terms of which Equation 1 becomes
=\ 2 =14 2 432 2
gs? = <1— m/2£> g2 - (LEm/2) @ + 7 dh ©)
1+m/2F c?

The analogues of rectangular coordinates may be introduced by
£E=rsinf cos ¢,
n=7sin @ sin ¢, _ (N

¢=Fcosf,
and then the metric becomes

| 7\2 =\4 (82 2 2

ds? = 1 - m/2i gt - (1 +m/2F)* (dE* +dn® +d¢?) . ®

1+m/2F c?

The harmonic system has a radial coordinate p where
r=ptm )]
in terms of which the metric has the form
1- ! + - 2 402 1+ 2 2

g2 = Lomle o 1 +mip)/(1 - mp)) dp® +p?(1+mlp) d22 o)

1+mj/p o2

Rectangular coordinates somewhat similar to those in Equations 7 are possible with reference to this
harmonic system (Reference 4).

To deal with these three radial coordinates at once, it is advantageous to write the metric of the
Schwarzschild space-time as
2u 2 2v..2 2
e*t dx* +e*Vx® dS
ds? =e? ds? - , (11)
2
c




where A, u, and v are functions of the radial coordinate x involving the constant m. The forms of these
functions are identified by comparing Equation 11 with Equations 1, 6, and 10, respectively, as x is
identified with r, 7, or p. It is clear that, for any one of these identifications, the condition m = 0
makes A, i, and v zero. Gravitational effects are then absent and the three forms of the metric reduce
to

dx? + x2 dQ?

ds? = dr? -
6‘2
d2+d 2+d2
=df? - £ n $ ’ (12)
c? :

withx =r=F = p. The metric is now that of special relativity and the coordinate system (¢, x, 8, ¢) has be-
come the inertial system in which x = 0 is the center of the now massless Sun. This is also an approximate
description of the coordinate system (¢, x, 6, ¢) employed in Equation 11 in those regions of the Schwarz-
schild space-time in which x is very large compared with m.

Figure 1 shows portions ABE and FC of the orbits of E'and F in space. The Earth is £ and the target
F isanother planet or a space probe. It is assumed that the paths are coplanar and lie in the plane § = /2.
Figure 1 also shows the paths AMC and CM'B of the outgoing and returning radar signals. They are null
geodesics of the space-time of Equation 11, and it is assumed that the signal is immediately reflected
at the target on its arrival there. Figure 1 refers to a configuration in which £ and F are on opposite
sides of the Sun. Figure 2 illustrates the configuration when E and F lie on the same side of the Sun.

Figure 1—Diagram of the paths AMC and CM'B
of the radar signals sent between the Earth £
and the target F. The center of the Sun is at
0,and OA =x_, OB=x;5, OC =x,, and OM = X.

Figure 2—Diagram for the paths AC and CB of the radar signals
sent between £ and F. The paths have been extended to / and
=0 M, respectively. Other definitions are as in Figure 1.




Because F and F are “‘material particles,” their invariant proper times are nonzero. Consider £
which is at (xg, m/2, ¢5) at time 7, and at (xg +dxg, n/2, ¢, +dey) at time ¢, +dt,. By applying
to Equation 11 the argument that produced Equation 1.8 of Reference 2, it follows that the invariant
velocity of E'is V., where )

Vi =[eMe 2 + e¥x2 ¢7)] ;. (13)

The dot denotes d/dt and the subscript £ means that every term within the bracket must be evaluated
atx = x, ¢ = ¢,. Also by Equation 11 the two events in question are separated by the orbital proper

time interval P12
dsp = l:e* <1 - -—> :| dtg . (14)
c?

E

As in Reference 2, this terrestrial proper time will be identified with the time kept by atomic clocks on
Earth. Corresponding formulas for F at C(x P 7/2, ¢F) at time ¢ p are

V%. = [e—27\(e2u )22 + e2v 52 éZ)]F

V2\1/2 (15)
dsp=[et \1- — dty .
c2
F

DOPPLER FREQUENCY FORMULAS

It will be assumed that the radar signal consists of a pulse of electromagnetic waves all of the same
frequency v. It will be necessary to have a prescription for the frequency relative to clocks that read
proper times proceeding at different rates. That is, if s and s’ are two of these proper times, then
ds/ds' # 1. The prescription to be employed is that of Kruger.! He argues that, in radar experiments,
it is the phase of the signal which is measured. Let ® be the phase of the wave, and let ds and ds' be
the proper time intervals during which the same increment of phase d® is measured. Then the fre-
quencies are to be defined as the rates of change of phase with respect to proper time. Thus,

dd
v= —
ds
V’ = _dE.
ds'
and therefore
v ods
- = —, 16
) ds' (16)

To express this result in terms of the (¢, x, 0, ¢) coordinates of the Earth and the target, the
method described in Section 5.4 of Reference 1 will be employed. This method consists of defining
the emission and the receipt of a wave by pairs of events as follows. In Figure 1, let the Earth E be at

1 . ..
B. Kruger: The Doppler Equation in Range and Range Rate Measurement. NASA GSFC Report X-507-65-385, 1965.



Alxg, /2, ¢y ) at time 7. Then the emission of an electromagnetic wave of frequency v, will be
described by the two events £ (¢, x5, 7/2, ¢5) and E, (¢ +dty, xp +dxg, /2, ¢y +dog), where
dt; may be regarded as the period of the wave in coordinate time. Similarly the receipt of the wave
of frequency v, by the target F at C is defined by the pair of events F, (¢, x, /2, ¢5) and

F,(tp +dtp, xp +dxp, 72, ¢p +ddg). The events (£, F,) lie on a null geodesic in the plane 6§ = /2
of the space-time of Equation 11, whose differential equations may be written (by Equations 2.308
and 2.309 of Reference 1) as ‘

2 2 2
0= 62)\ <£> T L 82“ <gﬁ> +eva2 (@)
dp c? dp dp >

d

e?vx? —¢ =Dfc ,
dp
ar_ .
dp ’

where p is a nonzero parameter varying continuously along the null geodesic and D and § are constants
of integration. These three equations reduce after some calculation to

dp e2A-»)pe

dr 2 an

X

2 2(A-v) 2 :
X\ _ 200-w (- E7D7) (18)
dt 32

It is convenient to introduce here two functions of x:

2(A-v) N2
0 Dy=1- 2 (19)
x2
P(x, D)= e“'}‘Q(x, D). (20)

The point M on a null geodesic such as AMC of Figure 1 is defined to be the point where x has its
minimum value, so that dx/dt = 0 at M. Thus if x = X at M, Equation 18 shows that

D = Xe"®-2X) | @

Along the portion A to M of the null geodesic, x decreases as ¢ increases, whereas x and ¢ increase to-
gether from M to C. Thus the negative square root of Equation 18 applies from A to M and the posi-
tive one from M to C. Hence integration of Equation 18 gives for the moments of emission at A and
receipt at C (¢ and ¢, respectively) the relation

c(t, -t )=/xE+ /xF e d 22
FE - y | Q&x,D)




Similar arguments apply to the result of dividing Equation 17 by the appropriate square root of Equa-
tion 18. Integration then yields

et 2v
bp - O = </ /) - T (23)
O(x, D)

Again, the events E, and F, also lie ona null geodesic whose integrated equations may be obtained
from Equations 22 and 23 by writing £, + dt,., 1 + th, Xg t de, Xptdxg, ¢p + d¢E, and

¢p +dog fortp, tp, Xp, Xps O and ¢, respectively, and also by altering the constant of integration
D to D+ dD. It is also easy to show that

(24)

2(A~-v)
0-1(x,D +dD)= Q"' (x, D) <1 + %> .
x2Q*(x, D)

The differences th - th and d¢F - d¢E are now required; and, since the second difference probably
involves the more complicated calculation, it is worked out in detail.

The null geodesic equation (Equation 23) for E, and F and its analogue for E, and F, yield

xgtdxg xp+dxp e7\+u—2v
dy - doy = (D +dD) / ¥ / dx
X+dX X+dX x2Q(x, D + dD)

A+u 2v
-D<[ / ) dx ,
x2Q(x, D)

where dX is obtained in terms of dD by taking differentials of both sides of Equation 21. If the right-
hand side of the last equation is evaluated to the first order in the differentials, it is found after some
calculation and the use of Equation 24 that

DdD erte-2v
__(d¢%" d¢E)—- (J{. J{. >
x2Q3(x, D)

2
+ DT Jxg) dxg +J(xp) dxg - 2J(X) dX] , (25)

where, in the last three terms,
ek+u-2v
Jx)= ————
x2Q(x, D)

A corresponding calculation applied to Equation 22 and its analogue for E, and F, yields

it DdD ertr- 2v Mt
. x2Q3(x, D)

+ = Uxy) dxy +10p) dip - A AXT, 26




where

I = 2
x)= .
Q(x, D)
If now Equation 25 is subtracted from 26 and Equations 19 to 21 are also used, it follows that
D dxp D dxg
dtp - — gy = Pxp, D) — =dty - —dgy + Py, D)— 27

which is the final result for the outgoing signal A to C. It has been established without the necessity of
finding dD or dX. Presumably Equation 27 is still valid when x r = X so that C and M coincide, in spite
of the fact that in these circumstances Q(X, D) = 0 and therefore also P(X, D) = 0. The result is also
expressible in terms of the #-time rates of change (dx/dt, d¢/dt = x, ¢) of the coordinates of E and F.
In fact, Equation 27 is also

dty 1= D¢p/c- P(xp, DYig/c

— = (28)

dtp,  1-Dé/c+PCxg,DYigfc

The returning 'signal is immediately reflected at C so that none of the symbols with subscript F
are altered. But the point of closest approach is now M’ in Figure 1, for which the constant is D'. The
t-time period is dt;, at B whose coordinates and their rates of change are x ., ¢, X,and ¢.. The sig-
nal is also now traveling from C to B. When all these changes are taken into account, and the preceding
calculations are repeated, it turns out that

d, 1+ D'¢[c - P(xy, D"ig/c 29
dty 1 +D'¢3F/c+P(xF,D')5c'F/c '

Formulas 28 and 29 refer to the configuration of Figure 1. When C, 4, and B all lie ““on the same
side” of the Sun, as in Figure 2, the calculations are simplified because, in the integrals corresponding
to Equations 22 and 23, the limit X does not occur. The limits in the integrals are simply x; and x.
The path AC of the outgoing signal now yields

dty 1= Dép/c+Pxg, D)p/e
- = T ; , (30)
dty 1- D¢E/c+P(xE,D)xE/c

while, for the returning signal along CB, |
dtp 1+ D'¢y/c- Plxp, D)ip/c a1
dty,  1+D'¢.[c- Plxp,DVip/c )

The final step consists in transforming from coordinate-time intervals to proper time intervals and
thence to frequencies through Equation 16 and results such as Equations 28 to 31. A frequency v,
emitted from A is received as v, at C, reemitted as v at C and received as V'E at B. The two-way radar
Doppler frequency formula is then

vp dsp  [eM1- V2/eHP], aty,
— = = -, (32)
vp dsp [ - VD2, dr,




and the one-way radar formulas are

e _dp AV, dig (33)

v dsp  ler1- V22 ar

vg dsp (- V)P, dty

(34)
vp dsp (M- V22, dr

In these formulas the ratios of the coordinate-time differentials are obtained from Equations 28 and 29
for the Figure 1 configuration and from Equations 30 and 31 for that of Figure 2.

Though Formulas 33 and 34 have been called Doppler frequency formulas, they nevertheless
incorporate the gravitational red-shift effect. Consider the case for which F and F are at rest, so that
in Figure 1, for example, 4 and B are coincident and x’E = xj. Though now %, ¢,and V are all zero at
Cand A4, yet Ve /VE and V'E /VF are in general different from unity because )\(xp) + ?\(xE). However,
in the two-way radar formula (Equation 32) the gravitational red-shift effect has been eliminated and

v = Ve
SPECIAL RELATIVITY

The results of the preceding section may be elucidated by considering their meanings in the
degenerate case of special relativity. In this theory, A, ¢, and v are all zero, the geometry is Euclidean,
and the paths of the signals are Euclidean straight lines. Hence by Equation 13 the velocity of either
E or F is given by

V2 = %2 +x2 0'52

= 4?2 +0? (35)
and, by Equation 21, D = X and D' = X'. The angle Y may be defined by
D
5 =cosy, (36)
and then Equations 19 and 20 show that
A\ 1/2
P(x,D)=Q(x,D)= ( - ——2—> =sin Y . 37
x

Replacement of D by D' in the last two formulas gives corresponding results for an angle y'. The
velocity diagram for the outgoing signal, A to C, of Figure 1 is shown in Figure 3. The one-way
Doppler frequency formula (Equation 33) may be converted by Equations 28 and 35 to

12
ve  [1-Vijc? 1 1 - (D/xp)Xvp/c) - Pxp, D)ug/c

vy \l-V2/2) 1= (Dfxg)vglc)+ Plxy, Dugle




\ ¢
J

Figure 3—Velocity components of £ at A and F at C.

But D
;UF +P(xp, Dyuy =vg cos Y +u, sin Vg

D .
= v - P(xE,D)uE— UJSVeR \,l/E - Ug sin IJJE
E

=WE s

where the velocity components wy, and w,., of F and E along the (straight) line of sight, are reckoned
to be positive in the direction A to C. Thus
(1- VZ/eHV2 1 -wefe
= . (38)
(1= VZ/e)H2 1 -w,/c

Vg

Vg

If F is identified as an ‘“‘observer’” who is at rest at C so that wg =0 and VF = (, then the emission
frequency in the rest frame of E at 4 is v, and the frequency received by the observer at C'is vp. In
terms of wavelengths, )\E = C/VE and A g = ¢/v,.; thus the last equation is

Ap 1+ (-wg /¢)
—= (39)
Ao (1-Vi/c2)i2

where the case of a negative value of w. is presupposed so that £ has a velocity of recession along the
line of sight as viewed from C. Equation 39 is the well-known Doppler formula of special relativity
(Reference 5) including the transverse Doppler effect represented by the term in V,25 /c?.

The velocity diagram for the returning signal C to B is shown in Figure 4. The factors linear in
the velocity components are those shown in Equation 29. The w components are again taken in the



Figure 4—Velocity components of £ at B and F at C.

direction of motion of the signal. Hence
!
! — 14 . !
- vy + P(xp, Dup = v, cos Y +up sin Vi
F
=-—W,
F
BII_P(IDI)Iz_I l//"'Silll[/’
7 Vg Xp,DYug =vg cos Y - ug B
E

=—w,
E

Thus the special relativity version of Equation 34 becomes

V! 1- V2/c2\'21-wl./c
LS ul £ (40)
vp 1 - V’E2/c2 1-wg/c

which is essentially the same formula as Equation 38 when it is remembered that v, now plays the
part of the emitted frequency. The reader may draw his own velocity diagrams for the Figure 2 con-
figuration. It is to be borne in mind that the v components are drawn in the direction of ¢ increasing
and the w components are always in the direction of motion of the signal. Then Equation 38 again
follows from the special relativity versions of Equations 30 and 33, and Equation 39 follows from
those of Equations 31 and 34.

The main point of this discussion is that the ratios of the ¢-time differentials in Equations 32 to
34 give the effects of the line-of-sight velocities of E at A and B and F at C and this interpretation may
be expected to hold for the non-Euclidean geometry of the Schwarzschild space-time. In this case
the principal complication arises through the definitions of the angles ¥ and Y'. An illustration, based
on the use of the metric of Equation 1, will be found in Section 3 of Reference 2.

10



NUMERICAL VALUES

To obtain an estimate of the orders of magnitude involved in the terms of the general relativity
formulas; the target will be assumed to move in the solar system under the gravitational attraction of
the Sun alone, which is in accordance with the definition of the Schwarzschild space-time. Inspection
of formulas 28 to 34 shows that the arithmetic will be simplified if the Earth is regarded as at rest
during the radar experiment. Under these conditions, the Figure 1 configuration has A and B coin-
cident, so that D = D'. Then Equation 32, with the aid of Equations 28 and 29, reduces to

Ve 1 - D¢/c - P(x, D)x/c

E 1+ Déjc + P(x, D)x/c ’ 41)

where the subscript F has been omitted on the right-hand side. The expression to be evaluated may
then be written

a0 = 259 L p oy (42)
X C C

Suppose that it is decided to use the coordinate r of Equation 1 in the first instance. Hence x =rin
Equation 11 and

e =1- 2_m ,
r
-1
e = ( _Em) , (43)
r
et =1,
so that Equation 21 with X =R is
2m\~1/2
D=R\1- — , 44)
R
and by Equations 19 and 20
2m\~1 R2 (1 - 2m/n|1/?
P(r,D)= - — - — — . 45)
r r? (1-2m/R)

These are exact formulas that would have to be used if » were approximately equal to R;i.e., fora
configuration in which C lay close to M. In a large number of configurations, however, the ratio
R?/r? is substantially less than unity. Thus it is possible to use expressions for D and P that are of the
first order in m/r and m/R, namely,

D=R <1 + 5”—>
R
R2>1/2 [1 , 2mir- (m/r+m/R)(R2/r2):|

(46)
P(r,D)= < - — R

r2

11



The exact expression for n(r) is obtained by substituting x = r and using Equations 44 and 45 in
Equation 42. The approximate expression derived from Equation 46 is

4 _ 27,2 :
n(r) = Lv_(L) | 4 m ré . 2mfr - (m/r+ m/RYR*[r*) F @7)
c r w(r) (1- R /P12 w(r) |,
where
R . R2\1/2
w(r) = 7(r¢)+ < - —2‘> r. -(48)
r

In Formula 47 and in all subsequent equations for 1, the contributions of the terms involving m (the
m terms) are enclosed in square brackets with subscript m. It was shown that when m = 0, and special
relativity applies, n reduces to w, which is the radial velocity of F at C relative to the stationary Earth at 4.

General relativity, however, contains no prescription that compels the use of r in preference to 7,
to p, or to any other radial coordinate that may legitimately be used in the Schwarzschild space-time.
Suppose, therefore, that x is next identified with 7 so that now

o2\ = <1_'M>2
1 +m/2F

e2H =¢e2v = (1 + Ln:)
2F

An alteration in the value of m is, of course, forbldden because the same central body is in question.
Then Equation 21 with X = R gives

4

3
D=R {1+ m/2R)? (49)
1- m/2R

and Equations 19 and 20 yield

— A+m/2* [ R21+m/2RE (1 - m2p 12
PF, D)= (A +m/20)° |, RX m/_) (- m/27) ' (50)
1- m/2F (1 - m/2R)? (1 +m/27)®
The approximate form of n(7) derived from these expressions and from Equation 42 is then
w(F 2m 7 2Im[F- (m/RYR2/F)] F
ny= YOy [2m P 2mfF (RYR ) | 1)
¢ 7w (1- R2/P)112 w(P)|,,

where w(7) is obtained from Equation 48 by replacing R and r by RandF, respectively. Lastly the
coordinate p of Equation 10 could be employed so that x = p and

ezh___ l—m/p ,
1+m/p
e2“= l+m/p )
1-m/p

2
o2 = (Hm) _
P

12



Then, if X = & and D = A, Equations 19 to 21 yield

1 +m/R)%?
po LHm/O7 o

(52)
(1- m/®)}?
2 3 _ 1/2
Plo, &) = 1+m/p . (Y_{_ (1 +m/R)”° 1-m/p . (53)
1-mfp 2 1-m/® (1+m/p)

It i_s_ noticed, by comparing Equation 49 with 52 and Equation 50 with 53, that the exact dependence
of D on R is different from that of A on ® and similarly for P(7, D) as compared with P(p, A). But to
the first order for the m terms

2 _ 2102 A
w(p) 1+[2_r{1_ P . 2Umlp- (m/RY&/pM)] b ] , 54)

np) = ——
¢ P wip) (1- &2 wp)],

where w(p) is obtained from Equation 48 by writing & and p for R and r, respectively. Comparison of
Equations 51 and 54 shows that n(¥) depends on 7 and R in the same way as n(p) does on p and &. To
this order of approximation therefore, it is immaterial whether the isotropic coordinate 7 or the
harmonic coordinate p is employed. But this would not be true for configurations in which ¥ were
nearly equal to R and p to &.

The Newtonian analogue for the motion of F is given by the elementary two-body problem in
which the mass of the Sun M, is regarded as infinitely great compared with the mass of any planet or
space probe. Asan example, let F be a space probe whose orbit, calculated by Newtonian theory, is an
ellipse with the Sun at one focus, of perihelion distance a, /5 and eccentricity e, = 2/3, wherea,, is the astro-
nomical unit of Newtonian orbit theory. The semimajor axis of the orbit of F'is then 3a, /5 and the semi-
latusrectumisa, /3. At any instant of absolute Newtonian time ¢, , the radial and cross-radial components

of the velocity of F are dr,
u, = -‘-1-;;
de,
v, =r —/— ,
n n dtn

) are the coordinates of F computed by Newtonian gravitational theory. They are

coordinates in Euclidean space; such Euclidean coordinates, which arise from Newtonian theory, will

be called N coordinates. Now let Figure 1 refer to a configuration in which F is at that end of the

semilatus rectum of its orbit at which 7, (equal to g, /3) and ¢,, are increasing together. The choice

is dictated by the well-known Newtonian theorem which states that the radial component of velocity

is greatest at an end of the latus rectum. At such a point

u, GMg eﬁ 5 \!/2 ,

2= [— — . (552)
c 2 1- e% 3a

where (r,,, ¢

n
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v GM, 1  5\!2
— , (35b)
3a,

2

l—en

9}
9}

Incidentally, reference to Equation 2 shows that both of these are of order (m/a)” 2 , a consideration
that might be employed in what follows. However, it is probably easier to go directly to the numer-
ical values, which are given in Equations 56.

In addition to placing F at one end of the latus rectum of its orbit, it will be assumed that F is
seen from FE at grazing incidence to the solar surface. In the sequel this will result in the m terms of
Equations 47, 51, and 54 being as large as possible. The r, coordinate of the point M of closest
approach to the Sun’s center will be identified with the solar radius R,

It is assumed that the quantities in the right-hand sides of Equations 47, 51, and 54 may be
identified with the corresponding Newtonian values. Thus there are three alternative identifications
according to whether x is chosen to be 7, 7, or p, and X to be R, E, or &. The three alternatives can be
represented by (Reference 6).

t=t,

n

=
It
w| |

1 13
= 51496 X 10 em,

X = R,

= 6.960 X 1010 cm,

X u
_ - _" (56)
C (5
= 1.147 X 1074,
xé v,
C - C
= 1.720 X 1074,
GM,,
m =
6‘2

1.477 X 10° cm.

The values of u, and v, are calculated from Equations 55 with e, = 2/3. It then follows from
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Equation 48 and its analogues for the coordinates 7 and p that

w(r) - w(r)

C c

w(p)
C

1.171 X 1074[1 - 9.539 X 10~ +0(10'9)]‘, (57

and that the m terms, if n is to be correct to the order 10-12 in Equations 47, 51, and 54, are,

respectively, [r]_ =1.011 X107
m . b
(71, = [p],, - 69
=1.443 X 1077 .

Thus, for the particular configuration in which F is at one end of the latus rectum of its orbit and is
seen from E at grazing incidence to the solar surface, the m terms differ in value by as much as 42 per-
cent as r, 7, or p is identified with the N coordinate r, . This is not a property peculiar to this con-
figuration. Examination of the m terms in Equations 47, 51, and 54 shows that differences would be
found in other configurations also.

A two-way radar experiment would, of course, give V'E /VE rather than 7. However, Equation 41
to a sufficient accuracy is

ve  l-n
VE_l+n
=1-2n+2n%.

~ Thus for the r coordinate, Equations 57 and 58 give

VI
= = 1-2342X107% +4.978 X 1078 + 0(10712) - [2.368 X 10°11 +- - 1, - (59)

Vg
If either 7 or p had been employed instead, the amount of the leading m term would have been
[3.379 X 10-11] m- Lhis example shows that an accuracy of one part in 10'! would be required in the
measurement of V;s /vE if the values of the m terms were to be deducible from two-way radar
experiments. ' :

The motion of the Earth produces additional mathematical complications in the evaluation of
V}; /vE from Equation 32 and either Equations 28 and 29 or 30 and 31. ‘One complication arises be-
cause the difference between D and D' must now be calculated. Another is that the values of these
constants are not known directly, as has been assumed in the foregoing example. In fact only the
coordinates of A, C, and B can be regarded as calculable from the orbits of E and F. The quantities
D and D' must therefore be expressed in terms of the coordinates of these three points. An approxi-
mate method of dealing with these matters, in terms of the r coordinate, is given in Reference 2.
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COORDINATE IDENTIFICATIONS

The smallness of the m terms and the considerations mentioned at the end of the last section
indicate that orbits of high accuracy for £ and F' are needed so that the coordinates of A, C, and B
and the velocity components at those points can be predicted as exactly as possible. To obtain such
orbits, it is necessary to allow for the attraction of the planets on each other or on a space probe. This
is done for the American Ephemeris by a method which is “in accordance with the Newtonian law of
gravitation, modified by the theory of general relativity” (Reference 7). This means that the Euclidean
space and absolute time of Newtonian theory are employed in writing down the equations of motion
of planets and space probes. These equations contain terms that allow for the motion of the Sun and
for the mutual attractions of the planets. But in addition, the equations contain terms, essentially
ad hoc, that produce a small rotation of the line of apsides of a planetary orbit. This small rotation
has the same value as that predicted for the orbit of a test particle in the Schwarzschild space-time,
where, as already stated, the planetary perturbations are by definition zero. A similar procedure
appears to be employed at the Lincoln Laboratory (Reference 4). A relativity perturbation is calcu-
lated for a test particle in the Schwarzschild space-time in terms of harmonic coordinates. It is
multiplied by an arbitrary constant factor (to be found eventually from observation) and is then
inserted into the complete Newtonian equations of motion to produce an additional perturbing force.
In either case, it can be argued that N coordinates, and their associated Euclidean velocity components,
are obtained. Both methods will be called “classical celestial mechanics.”

The problem of identifying the N coordinates with some set of coordinates in the non-Euclidean
space of the Schwarzschild field has still to be solved. One way of proceeding is by definition, as was
done explicitly in the preceding section. Or the definition may be made implicitly as in the Lincoln
Laboratory method. The insertion of the relativity perturbation into the Newtonian equations of
motion carries with it the implications that the ¢ time of the Schwarzschild field is identical with the
Newtonian absolute time 7, and that the harmonic coordinates are identical with the V coordinates.
It is true that Fock (Reference 3) has attempted to prove theoretically that harmonic coordinates are
in some sense superior to others, a contention that contradicts Einstein’s aim of putting ali coordinate
systems on a par with one another. Fock’s idea might carry weight if it could be shown that the m
terms in the n(x) of Equation 42 always had their smallest numerical values when harmonic coordinates
were employed. It might then be argued that these coordinates most closely approximated the N
coordinates. But it has been shown that harmonic coordinates do not always produce the smallest
values of the m terms.

When radar time delays were considered (Reference 2), the m terms were found to be larger, of
the order of 10~ 7, than those shown in the Doppler frequency formula (Equation 59). They are also
different in value according to the identification employed. Thus the same problem of coordinate
identification arises.

An alternative solution of the problem is possible in principle. Orbits of £ and F would be
calculated by classical celestial mechanics combined with observations of E and F for those configura-
tions in which the m terms could be expected to be negligibly small. The N coordinates thus produced
would then be identified in turn with the coordinates used in Equations 1, 6, and 10 to predict the
values of the m terms for those configurations in which these terms were expected to be as large as
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possible. Simultaneously, measurements would be made of time delays and Doppler frequency ratios
in these configurations with large m terms. In this way, not only would the predictions of general
relativity be checked, but the Schwarzschild coordinate system that most closely corresponds to the
N coordinates would be identified.

In conclusion, reference may be made to a point that is more easily discussed with respect to
Doppler frequency formulas than to time delays. The frequency ratios, in Equation 16 or 32, for
example, are obtained as the ratios of two invariant intervals ds. It might therefore be argued that the
particular coordinate system used in the calculations could not affect the result. This is true so long
as coordinate transformations such as those in Equations 5 and 9 are in question. In these transforma-
tions, to every  there corresponds a different r or p calculated from the two formulas, and vice versa.
But this is not the operation envisaged in the coordinate-identification procedure. In the previous dis-
cussion, for example, the question was whether r, 7, or p should be identified with q, /3; this is not
a transformation of the kind envisaged in Equations 5 and 9. Thus, invariance of the Doppler
frequency ratio is not to be expected.
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